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The theoretical implications behind the derivation and application of Hougen-Watson 
rate equations to catalytic reactions are discussed. For reactions which possess an order 
higher than one, there may be numerous complex Hougen-Watson rate equations and the 
task of selecting the particular one which fits the data most satisfactorily becomes ex- 
ceedingly difficult. It is shown that in the examination of such complex equations the 
choice of the data to which they are applied is of paramount importance, while the so- 
phistication of the method of fitting an equation to a set of data is of secondary importance. 
Thus it is found that integral reactor data are preferable to differential data, and that 
in certain situations the analysis of differential data is intractable. The use of a complex 
and statistically sophisticated nonlinear least-squares technique is found to be no more 
successful than a simple linear least-squares curve-fitting procedure. 

SYMBOLS e Fractional surface coverage, with 

Initial oxygen concentration (mole subscript 

fraction), this symbol is also used 4 Variable to allow integration of 

to refer generally to oxygen rate conversion equation, defined 

Stoichiometric coefficient by sin26 = (A - &)/(A - &lx) 

Initial fuel concentration (mole ?r Total pressure (atm) 

fraction), this symbol is also used 
to refer generally to fuel 

Subscripts 

Regression coefficients A Oxygen 

Dissociated fuel B Fuel 

Total volume flow rate to reactor D Dissociated fue1 
(ml/min) i Interface 

Adsorption equilibrium constant g Gas phase 

(atm-l) M Product 

Rate constant 
Constants in rate conversion 

HOUGEN-WATSON RATE EQUATIONS- 
THEIR DERIVATION AND MEANING 

equation 
Initial product concentration (mole Gas reactions which are catalyzed by 

fraction), this symbol is also used solids actually occur on the surface of the 

to refer generally to a product solids between atoms or molecules of re- 

Stoichiometric coefficient actants which are chemically adsorbed at 

Partial pressure, with subscript points of high chemical activity. These 
Number of terms in polynomial points are termed “active centers.” The 

regression equation catalyst increases the rate of reaction 
Reaction rate (moles fuel/min) through its ability to adsorb the reactants 
Molar volume at entry conditions in such a form that the activation energy for 
to reactor (ml/mole) reaction is reduced below its value for the 
Fractional conversion uncatalyzed reaction. Thus the rate of the 
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surface reaction will be proportional to the 
surface concentration of the adsorbed species 
on active centers. 

The Langmuir adsorption theory enables 
hhese surface concentrations to be deter- 
mined, and from them equations connecting 
t,he rate of reaction with the gas-phase 
partial pressure of the reactants can be 
‘devised. These equations are known as 
Hougen-Watson rate equations. 

The derivation of these equations is best 
‘illustrated by a simple example. Consider 
-the irreversible decomposition 

A+B 

taking place on a nonporous catalyst where 
the “slowest” or rate-controlling step is the 
surface reaction of A. 

The rates of the various steps in this re- 
.action are 

((1) Diffusion of A to the catalyst surface: 

7.1 = Iz,(P*, - PA‘) 

(2) Activated adsorption of A: 

rz = ~e[p.& - (~A/KA>I 

‘(3) The surface reaction (this is thezrate- 
controlling step in the example being con- 
sidered) : 

f-3 = k3eA 

(4) Activated desorption of B: 

(5) Diffusion of B from the catalyst surface: 

Under steady state conditions the rates 
of all these steps must be equal, i.e., 

r1 = rz = r3 = r4 = r5 = r 

Hougen-Watson rate equations are obtained 
by assuming that one of these steps is rate- 
controlling. The other four steps are all 
intrinsically capable of going much faster 
than this rate-controlling step, but their 
rates and the rate of the overall reaction are 
governed by that of the slowest. The in- 
herent speed of these four steps will be re- 
flected in the high values of their rate con- 
stants (Iz&, k4,k5) when compared with the 

rate of the overall reaction. It is thus permis- 
sible to consider that 

r r -N-N--N--No 
x-1 A’2 Ii4 is 

Thus step (1) gives 

PA, = PA, (1) 

(i.e., the partial pressure of A in the gas 
phase is t,he same as its partial pressure at 
the interface). 

Step (2) gives 

PAiev = eAIKA (2) 

Step (4) gives 

eBIKH = Pd” (3) 

Step (5) gives 

PI% = plig (4) 

Substituting 0,. = 1 - eA - eu, solving Eqs. 
(2) and (3) first for eA and then for OH, and 
putting pAi = PA, and pni = pu, produces 
the familiar equations: 

KAPA~ 
eA = 1 + KAPA, + KHPIS, 

eK = KHPH. 

1 + KAPA. + KHPB~ 

which are the Langmuir isotherms when two 
adsorbents are present on the surface.* 

Substituting the Langmuir isotherm for 
eA into the equation for the rate of Step (3) 
(the rate-controlling step) then produces 
a typical Hougen-Watson rate equation: 

h&PA. 
’ = 1 + KAPA, -I- KBPW 

In a similar way it is possible to construct 
Hougen-Watson rate equations for every 
conceivable situation. This is fairly easy to 
do for the simple example quoted above 
where the total number of possible rate 
equations is small. However, in the case of 
a reaction such as 

A + B--1 11 

*The adsorption constants KA and Ke may be 
functions of surface coverage, and it is a limitation 
of this approach that they are assumed independent 
of coverage. 
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there is a very large number of possible rate TABLE 1 

equations and a logical and systematic POSSIBLE RATE-CONTROLLING 

method of generating them must be adopted. STEPS AND THEIR RATES 

It has been found that the most suitable 
way of doing this is to construct a table 
comprising all possible adsorbed species and 
rate-controlling steps. This has been carried 
out for a hydrocarbon oxidation reaction 

Rate-controlling step 

Rate of 
rate-00ntr01liig 

steps 

B + 02 -+ M 
Hydrocarbon Oxygen Product 

Generally in hydrocarbon oxidation, desorp- 
tion is not rate-controlling and so in this 
particular case the number of possible mech- 
anisms is reduced. The reason for this is that 
the adsorption of products such as water, 
carbon dioxide, or carbon monoxide on noble 
metal catalysts is either nonexistent or weak 
in comparison the adsorption of oxygen or 
hydrocarbons (1, 2). Desorption will cer- 
tainly be unimportant in this study since 
the hydrocarbon concentration was delibe- 
rately kept low (< l%), the conversions 
were usually less than 0.5, and thus the 
product concentrations were always much 
less than 1%. 

Adsorption controlling 
1. Adsorption O2 
2. Adsorption 0 
3. Dissociation 02 + 0 

* * 

r = kevpo, 
T = ke,2pop 
T = keveon 

4. Adsorption of fuel (B) r = kevpB 
5. Adsorption of D r = k@&B 

6. Dissociation B + D + H r = k0,BB 
* * * 

Surface reaction controlling 
7. Reaction B + 02 

* 
T = keO$B 

8. Reaction B + 0 
* 

r = kOopB 

9. Reaction B + 20 
* 

r = kt902pB 

10. Reaction B + 02 
* 

r = kOspoz 

11. Reaction B + 02 
* * 

r = k&h2 

12. Reaction B + 0 
* * 

r = koBe0 

Furthermore, the Hougen-Watson rate 
equations are simplified somewhat since the 
reaction is irreversible. 

When oxidation is occurring over a noble 
metal catalyst the possible adsorbed species 
include 

13. Reaction B + 20 r = kB&? 
* * 

14. Reaction D + 01 
* * 

T = kODOot 

15. Reaction D + 0 
* * 

r = kfmo 

(i) B, the hydrocarbon 
(ii) D, the dissociated hydrocarbon 

16. Reaction D + 20 r = keDeo= 
* * 

(i.e., B = D + H) 
(iii) 02, molecular oxygen 
(iv) 0, atomic oxygen 

17. Reaction D + 0, 
* 

r = keDPo2 

The need for a systematic method of 
developing Hougen-Watson rate equations 
becomes apparent when it is realized that 
any combination of these adsorbed species 
may exist on the surface and for each of 
these combinations several controlling mech- 
anisms may be possible. The possible rate- 
controlling steps and their rates are listed in 
Table 1. Table 2 shows the matrix of ad- 
sorbed reactant species and rate-controlling 
steps. The adsorption system number in 
this table is indicative of the adsorbed 
species present on the surface. 

A combination of an adsorption system 

Adsorbed species 
Molecular oxygen 02 Fuel B 

l I 

Atomic oxygen ? Dissociated fuel D 
* 

Coverages 
0, Fraction of es Fraction of 

surface vacant surface covered 

00, Fraction of by fuel 
surface eD Fraction of 
covered by surface covered 
molecular by dissociated 

oxygen fuel 
e Fraction of 

surface 
covered by 
atomic oxygen 
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TABLE 2 
ADSORBED SPECIES AND CONTROLLING MECHANISMS 

“fz- Adsorbed speciw 
system - Possible rate-controlling 
number D B 02 0 steps 

0 ---- 

i - * - - 4, 10 
ii -- * - 1, 7 
. . . 
111 -- * * 1, 2, 3, 7, 8, 9 
iv -* * - 1, 4, 7, 10, 11 
V - * - * 2, 4, 8, 9, 10, 12, 13 
vi -* * * 1, 2, 3, 4, 7, 8, 9, 10, 

11, 12. 13 
vii --- * 2, 8, 9 

. . . 
vi11 *-- - 5. 17 
ix * *- - 4, 5, 6, 10, 17 
X * - * - I, 5, 7, 14, 17 
xi * ~ * * 1, 2, 3, 5, 7, 8, 9, 14, 

15, 16, 17 
xii * * 1; - 1, 4, 5, 6, 7, 10, 11, 

14, 17 
. 

Sill * *- * 2, 4. 5, 6, 8, 9, 10, 
12, 13, 1.5, 16, 17 

xiv * * * * 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 
14, 15, 16, 17 

sv * ~- - * 2, 5, S, 9, 15, 16, l- 

a *, Sdsorbed; -, not adsorbed. 

number and a rate-controlling step leads to 
a Hougen-Watson rate equation and, in the 
present case there are 104 possible rate equa- 
tions. Each rate-controlling step can give 
rise to several Hougen-Watson rate equa- 
tions because the form of the Langmuir iso- 
therm for the coverage by a particular re- 
actant depends on the other adsorbed species 
present. Thus step 1, the adsorption of oxy- 
gen, may be rate-controlling in several situa- 
tions; for example, when molecular oxygen 
alone is chemisorbed (adsorption system ii) 
the Hougen-Watson rate equation is 

r = kpO,/(l + &PM) (5) 

yet if the fuel (B) is also adsorbed [adsorp- 
tion system (iv)], the Hougen-Watson rate 
equation becomes 

kPo2 
’ = I + KOJIO, + &PM ((2 

(the term KM~M in the denommator arises 
because these equations allow for the pos- 
sible adsorption of a product M). 

~ALYSI~ OF DATA FROM CATALYTIC 

REACTORS USING HOUGEN-WATSON 
RATE EQUATIONS 

In the analysis of catalytic data the object 
is to decide which Hougen-Watson equation 
best describes the data and thereby decide 
011 the reaction mechanism. There are two 
criteria 011 which to base this decision: 

(i) The rate and adsorption constants 
(k,Ko,,Kn) must be positive. 

(ii) The statistical fit of the equations to 
the data should be good. 

In order to make a satisfactory choice, it is 
necessary to obtain an accurate estimate of 
the rate and adsorption constants, but the 
complexity of the Hougen-Watson rate 
equations makes this very difficult. 

Before discussing the applicat,ion of these 
rate equations to experimental measure- 
men&, it is first necessary to describe briefly 
the types of reactor and data t,hat may be 
used. 

Both static and flow reactors may be used 
in the study of catalytic reactors. Most work 
has, however, been performed using flow re- 
actors; one of the reasons for this is that it is 
easier to eliminate diffusion effects in a re- 
actor of this type. 

In a flow reactor, the relationship between 
flow rate and conversion is given by (3) 

(2)(i) = i”$ (7? 

and the react,ion rat,e is then given by differ- 
entia.ting Eq. (7) 

(8) 

Thus in order to measure th : reaction rate 
a series of runs is required measuring conver- 
sion as a function of flow rate. The reaction 
rate is then given by the gradient of the 
graph of conversion (x) vs. reciprocal flow- 
rate (l/F). 

Alternatively, the rate may be measured 
in a differential reactor. Here, the reactor 
bed is small and t,he conversion very low, so 
that the rate may be assumed to be constant 
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FIG. 1. Integral data: conversion as a function of reciprocal flow rate for combustion of benzene over a. 
silica-supported platinum catalyst. A = 0.2; H = 6.74 X 10-s; r = 1 atm; temperature 313°C. 

Through the bed. The rate is then given by 

(9) 

Two kinds of data are thus available for 
analysis. The first type, integral data, is 
illustrated in Fig. 1 for the oxidation of 
benzene over a platinum on silica gel cata- 
lyst. A complete set of integral data consists 
of several such plots at varying initial re- 
actant conditions. The second type of data, 
differential data, comprises a set of measure- 
ments of reaction rate at various partial 
pressures of the reactants. A typical set of 
differential data for the same reaction is 
shown on Fig. 2. 

To date, most catalytic work involving 
Hougen-Watson rate equations has been 
concerned with the analysis of differential 
data, since these may be obtained more 
easily and quickly than integral data. How- 
ever, this economy proves to be false when 
an attempt is made to analyze differential 
data using complex rate equations. 

This has commonly involved the rear- 
rangement or “linearization” of equations 
such as (lo)* 

to give: 

1 + Ko,po, + KBPB + Knrpbl 
= (~Kopn)““(po~Bl~>“2 (11) 

Values of [po,pn/r)* are computed from 
the sets of measurements of r as a function of 
firstly po, and secondly pB. These values are 
then fitted by the linear least-squares tech- 
nique to equations such as (11) to give the 
regression constants Ko2, KB, and (IcKo, 
Kg)+. (The term KM~M disappears in this 
case since measurements have been made 
under initial conditions where PM = 0.) 

Thus, when the data are slightly scattered, 
and when the curvature of the plot of rate 
against partial pressure of reactant is very 
gradual, then this analysis is found to be 
unreliable. The graphs of r against po, in the 
experimentally accessible region were, in 
fact, close to straight lines. 

* Equation (10) is derived from the model system 
in which fuel and oxygen are molecularly adsorbed 
(adsorption system number iv in Table 2) and the 
rate-controlling step is the surface reaction between 
the two (step 11 in Table 1). 
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These difficulties have also been noted by 
Kitrell et al. (4) and by Blakemore and 
Hoer1 (~4, who suggested that a more accu- 
rate estimate of the rate and adsorption 
equilibrium constants will be obtained if 
a nonlinear least-squares technique using 
Eq. (10) in its nonlinear form is employed. 
However, although this method of treating 
Eq. (10) is certainly superior to the simpler 
linearization technique from a statistical 
viewpoint, it still involves the fundamentally 
unsound application of a complex rate 
equation to ill-designed data. Thus an exami- 
nation of the results obtained by these 
workers (4, 5) in an analysis of data by both 
linear and nonlinear techniques suggests 
that there is little advantage in using the 
nonlinear technique. 

Certainly, if a large number of rate equa- 
tions have to be handled, the complexity of 
t,his technique renders its use prohibitively 
time-consuming. 

Upon reflection, it would appear more 
fruitful to attempt to measure the reaction 
rate (T) in regions of concentration (po, and 

ps) where Ko, and Ke can be most acc’u- 
rately calculated. A method of deciding on 
such regions of concentration (i.e., an experi- 
mental design) for nonlinear equations such 
as Eq. (11) has been described by Box and 
Lucas (6) and applied in a hypothetical situ- 
ation by Kittrell et al. (7). It involves the 
calculation and minimization of the confi- 
dence volume, a measure of the total error 
in the estimated rate parameters [k,Ko,, Ke 
in Eq. (ll)]. But as Box and Lucas (6) point 
out, the experimental conditions which an 
experimental design shows would be most 
fruitful often prove unworkable, in practice. 
For example, under conditions of tempera- 
ture or concentration which are statistically 
ideal for the calculation of the rate constants, 
it may be impossible to measure the rate of 
reaction. 

This was indeed found to be the case in 
experiments concerned with the oxidation of 
benzene over a platinum catalyst. An 
examination was therefore made of data 
collected from an integral reactor. These 
were found to be more attractive for the 

2-5 - 

e-o - 

FIG. 2. Differential data: reaction rate as a function of initial benzene concentration. A = 0.25; tempera 
ture 267°C; K = 1 atm; catalyst 0.043 g platinum on silica. 
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following reasons: It is possible to make 
measurements more accurately and the 
accuracy does not decrease with conversion, 
as it does with differential data, but rather 
inereases since at higher conversions concen- 
tration changes are more accurately mea- 
sured. Furthermore, the effect of the prod- 
ucts on the reaction as they are formed is 
easily noted; this introduces an additional 
constraint which must help in the selection 
of the correct rate equation. 

Relatively little use has been made of 
integral data, because its analysis is complex. 
For example, as early as 1947, Hougen and 
Watson (3) showed that if the rate (r) was 
expressed as an explicit function of the con- 
version (2) then it was possible to integrate 
Eq. (8) to give an equation of the form 

l/F = .f@,KOr,KB,Z! (12) 

The fitting of Eq. (12) to integral data (Z vs. 
l/F) then gives the constants (k,Ko,,Ks). 
Objections to this technique are that firstly, 
in only a few cases is it possible to integrate 
the Hougen-Watson rate equations analyti- 
cally, and secondly, if this integration is 
achieved the resulting equation (12) is so 
complex that the use of complex nonlinear 
least-squares techniques is required. How- 
ever, this method has been used to examine 
a few relatively simple Hougen-Watson rate 
equations in a st,udy of the catalytic oxi- 
dation of methane on palladium (8). It, was 
found that very complex nonlinear tech- 
niques were required to fit the integrated 
equations to the data. The value of integral 
data has also been stressed by Peterson and 
Lalidus (9), who also pomt out that discri- 
mination among alternative models may be 
due in large part to the experimental design 
in certain circumstances. 

In view of the fact that integral data can 
be measured accurately, a method of analysis 
was sought which would use this data and 
yet was free from the mathematical objec- 
tion discussed above. This method of anal- 
ysis has to be relatively simple so that it can 
be applied to a large number of equations. 
One method described in this paper (Method 
B) utilizes equations which are developed 
from the equations suggested by Hougen 
and Watson (3) in which the rate is expressed 

as an explicit function of the conversion, the 
so-called “rate-conversion equation.” 

However, an even simpler method of fit- 
ting these equations to integral data has 
been devised (Method A). This involves 
fitting a polynomial to the conversion vs. 
reciprocal flow rate data, thereby effectively 
smoothing the curve. Differentiation of this 
polynomial then enables a set of empirical 
rate vs. conversion data to be generated, to 
which the equation connecting the rate 
explicitly with the conversion may be fitted. 
This method will now be discussed in more 
detail. 

THE APPLICATION OF HOUGEN-WATSON 
RATE EQUATIONS TO INTEGRAL DATA 

In this particular study, since the volume 
change is very small, it is possible to simplify 
the Hougen-Watson rate equations some- 
what by expressing the partial pressures in 
terms of the initial mole fractions of the 
reactants. However, the procedure could be 
easily adapted to reactions in which a large 
volume change takes place. 

Thus for the hydrocarbon oxidation 
reaction 

B + a02 + mM 

taking place at very low hydrocarbon con- 
centrations (< 1% by volume) it is permis- 
sible to write 

po, = (A - uBs)n 
pB = (1 - z)h 

In the example previously considered, viz., 
surface reaction between molecularly ad- 
sorbed fuel and oxygen, then substitution of 
these values into Eq. (11) gives 

r = (-4 - aBz)(l - 4 
(k, + k22)2 (13) 

where 

,, = 1 + AKo;lr + BKBR + M&T 
Ll (kKo&&r2)‘12 04 

k2 = (mKM - aKo, - KBW 

(kKo&B~2)1’2 (13 

The problem is now reduced to finding the 
constants 1~~ and k2 in rate-conversion equa- 
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tions such as (13), given a set of integral x data and then fitted by a straightforward 
data [conversion (x) vs. reciprocal flowrate multilinear least-squares procedure to Eq. 
W)l. (19) to give the constants kl and k2. 

Having calculated kl and k2 for several 
METHOD A sets of integral data at different initial re- 

This method of calculating lc, and kz in- actant concentrations (i.e., different values 
volves fitting a polynomial of the form of of A and B). k, Ko2, Kn, and KM may easily 
Eq. (16) to the CC vs. l/F data. be calculated from the simultaneous equa- 

tions obtained by substitution of the values 
= blx + b2x2 + . . . + b&’ (16) of kl, k2, A, and B into Eqs. (14) and (15). 

The advantages of this procedure are that 

where bl,bz, . . . 6, are regression coefi- the equations being handled are relatively 

cients and p is the number of terms in Eq. silnple and linear in k, and k2, thus allowing 

(16). a linear least-squares curve fitting procedure 

This polynomial is then differentiated to to be employed. The development of a linear 

give least-squares curve-fitting routine on a com- 
puter which will fit any linear equation of 

- = b, + 262x + 3bsx2 
any functional form has enabled a large 
number of equations to be handled. 

+* . . + pbgp--l (17) 
METHOD B 

Equation (8) indicates that Integration of Eq. (13), followed by fit- 
v, d(l/F) 1 ( > ting it directly to conversion vs. reciprocal 
- -=- 
B dx I’ flow rate data gives k, and k2. These values 

can be compared with those obtained by 
thus by substitution of suitable values of Method A. 
conversion into Eq. (17) it is possible to The integration of Eq. (13) yields 
generate a set of l/r vs. x: data (within the 
range of experimental measurements) to 

l/F = k,‘fi(x) + klkJ”z(x) + kz2f3(x) (20) 

which a rearranged form of Eq. (13), namely where 
Eq. (18) may be fitted. 

(;>‘I’ = k, ( 
(A - aB:)(1 - x) 

)“? fib) = 
-2 log cos CpL 

d - aB 

l/2 

+ k2 (A - CZB:)(I - xj > 
(18) 

This is the form + $ log tan 4~ 
1 

y = k,w + kzx (19) 

where 
f3(2) = - {($y2yy&lf” 

1 l/2 

Y= ; 0 + 
2(A + aB) 1 

(aB)2 sin’ C#I~ 

and 

(A - aB:)(l - x) 

l/2 
log cos 4L = log cos 4 - log cos $0 
log Cos 4~ = log tan 4 - log tan & 

(A - a&(1 - x) 
112 

1 1 1 
sin2 

z7-y 
sin2 C#I sin2 C#I~ 

It is apparent that the functions y,w, and z 40 is the value of I#J at z = 0 (the lower limit 
are easily calculated from the empirical T vs. of integration) and 4 is defined by 
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TABLE 3 
COMPARISON OF VALI:ES OF !-cl AND Iz* OBTAINED FOR Ea. (13) BY METHOD A 

(LINEAR LEAST~QUARES) AXD METHOD B (NONLINEAR LEAST-SQUARES) 

kI kz 

Method A X&hod I3 Method .2 Method B 

1.92 x lo” 1.91 x lo” - I.222 x lo’ - 1.18 X lo” 
2.09 x lo’ 4.09 x lo” - 1. 17 X 10’ - 1.16 X 102 
2.06 X 102 2 04 x 10” - 1.09 x IO” - 1 10 X lo? 
1 TG x 102 1.80 x 10” -s.95 x 10 -9.80 x 10 

A - aB 
sin2 4 = L4 _ aBx 

Equation (20) is thus quite complex and 
nonlinear. It must be fitted to the z vs. l/F 
data using nonlinear least-squares and this 
involves the use of the Newton-Raphson 
iteration procedure. The range of applica- 
tion of this procedure is therefore limited by 
(a) the complexity of the curve fitting pro- 
cedure and (b) the fact that only a few of the 
simpler equations can be integrated. 

The results obtained by both methods of 
analysis are compared in Table 3 for some 
data obtained for the oxidation of benzene 
on palladium on glass. 

From these and some similar results ob- 
tained for other simpler Hougen-Watson 
rate equations it was concluded that the 
linear least-squares curve fitting (Method A) 
provides an adequate method of accurately 
calculating the constants h-, and kz. Thus the 
mathematical sophistication of the analysis 
is of reIativeIy little importance when com- 
pared with the type and accuracy of the 
data used. This conclusion was also reached 
(see discussion above on differential data) 
when the results obtained by an analysis of 
differential data by both linear and non- 
linear techniques were examined (3, 4). 

Briefly summarizing the procedure, TabIe 
2 leads to a total of 104 Hougen-Watson rate 
equations. When the partial pressures in 
these rate equations are replaced by the 
initial mole fractions and conversion a total 
of 28 distinct rate equations results. Equa- 
tion (13) is one such equation. These 28 rate- 
conversion equations are now fitted to the 
integral conversion vs. reciprocal flow rate 
data, using the relatively simple linear least- 
squares method, to give the constants kl and 
1~~. Having calculated k1 and kz for all the rat,e 

conversion equations, the selection of the 
correct Hougen-Watson rate equation and 
hence the reaction mechanism is a simple 
procedure. Equations (14) and (15) show 
that for the rate and adsorption equilibrium 
constants to be positive then k1 must be 
positive, and furthermore, k1 and kz must 
vary in a particular way with the initial mole 
fraction of the reactants. Thus by observing 
the effect of initial concentrations on k, and 
kz it is possible to select the correct mecha- 
nism and calculate the rate and adsorption 
equilibrium constants (~~,Ko,,KB,KM). A fur- 
ther check is provided by the statistical fit 
of the rate-conversion equations to the data, 
as indicated by the variance of the fitted 
curves. In the reactions investigated in this 
work it has been found that only one Hou- 
gen Watson equation out of a possible 104 
is able to satisfy the two conditions, namely 
that the constants k, and kz should vary in 
a particular way with initial concentration 
and that the equation provides the best 
statistical fit to the data (10). 

In conclusion, it is worthwhile considering 
why an analysis of integral data should yield 
more accurate results than an analysis of 
differential data. 

The first reason is simply an experimental 
one. It is difficult to measure the differential 
rate accurately, whereas it is fairly easy to 
measure accurate integral data collected at 
higher conversions. Furthermore, it has 
been found that an analysis of integral data, 
when the whole of the conversion vs. recip- 
rocal flow rate graph is utilized, yields more 
accurate results than an analysis utilizing 
only part of this graph. For example, the 
most accurate method of measuring the differ- 
ential rate is bydeterming the gradient of the 
tangent at the origin of the graph conversion 
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vs. reciprocal flow rate. This was done for 
two duplicate runs measured under the same 
experimental conditions and it was found 
that the rates differed by 11%. Yet when 
Eq. (13) was fitted to the whole of the con- 
version vs. reciprocal flow rate graph the 
values of k1 (a quantity dependent on the 
rate at zero conversion-see below) for the 
two runs differed by only 1.5%. 

This accuracy is further illustrated by an 
examination of some results obtained on 
benzene and cyclohexane oxidation on pal- 
ladium on glass (10). It was found that the 
rate equations derived from integral data 
were capable of predicting the initial rate 
within the error limits involved in the mea- 
surement of this rate. Yet an attempt to 
derive these rate equations from the initial 
rate failed due to the errors in the initial rate 
in the experimental region in which the data 
was measured. 

The second advantage to be gained in 
using integral data is the selectivity of the 
method of analysis. For example, four cata- 
lytic systems were studied (10) and it was 
found in each case that only one out of 104 
mechanisms was capable of satisfying the 
conditions imposed. 

Upon reflection, it would seem that the 
accuracy and selectivity which results from 
the analysis of integral data is due to the fact 
that a particular rate equation is required to 
satisfy more rigid and accurate conditions 
than are required in the analysis of differ- 
ential data. Firstly, it is required to fit a set 
of conversion vs. reciprocal flow rate data 
(effectively rate vs. time of reaction data) 
and secondly, the constants obtained from 
this curve fitting must vary in a particular 
way with reactant concentrations (effec- 
tively rate vs. initial concentration data). On 
the other hand, in an analysis of differential 
data an equation only has to fit the observed 
variation of t#he rate with initial concen- 
tration. 

This becomes apparent if one examines 
the physical significance of the constants k, 
and k2 in a typical case, e.g., Eq. (13). Since 
the initial rate (ri) is the rate at zero con- 
version (x = 0), putting z = 0 in Eq. (14) 
and rearranging gives 

k-1 = (A/ri)“’ 

furthermore by differentiating Eq. (13), 
rearranging, and putting x = 0 

Thus k, is a quantity dependent on the 
initial rate (Ti) while h-2 is dependent on the 
initial rate of change of the rate with con- 
version. This is confirmed by an examination 
of Eqs. (14) and (15), which indicates that kl 
is only dependent on the initial concentra- 
tions. Equation (15) however, contains the 
stoichiometric coefficients a and m and thus 
k, will depend on the rate of disappearance 
of the reactants and formation of products. 
Therefore in order to measure it accurately, 
it is necessary to work at high conversions. 
This has been experimentally confirmed. 

Thus the earlier conclusion that an anal- 
ysis of integral data is more accurate and 
selective than analysis of differential data 
because it requires a prospective rate equa- 
tion to satisfy two conditions rather than 
one is justified. 
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